
VHDL State Machine

Booker A Robinson

January 2025

Contents

1 Introduction 2

2 Snail Brain Model 2

3 Anatomy of VHDL 3
3.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.3 Entity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.5 Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.5.1 Concurrent Statements . . . . . . . . . . . . . . . . . . . 4
3.5.2 Sequential Statements . . . . . . . . . . . . . . . . . . . . 4

3.6 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Describing the Snail 5

5 Simulating the Snail 6
5.1 Test Bench Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.2 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

6 Understanding the Schematic 8

7 Bringing it all together 9
7.1 Bringing the snail to life . . . . . . . . . . . . . . . . . . . . . . . 10
7.2 Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . . 12
7.3 Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7.3.1 RTL Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 12
7.3.2 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 13

7.4 Package and Device . . . . . . . . . . . . . . . . . . . . . . . . . 13

8 Conclusion 14

9 References 14

1



1 Introduction

”VHSIC Hardware Description Language (VHDL) is defined. VHDL is a for-
mal notation intended for use in all phases of the creation of electronic sys-
tems. Because it is both machine readable and human readable, it supports
the development, verification, synthesis, and testing of hardware designs; the
communication of hardware design data; and the maintenance, modification,
and procurement of hardware.”[1]

We will be using VHDL in this practice to implement the ”snail brain” example
with a finite state automata.

2 Snail Brain Model

A snail with 1 bit of memory crawls along a piece of paper with
0’s and 1’s on it. The snail smiles when it sees a 0 followed by a 1,

and frowns otherwise.

This definition describes the following finite state automata.

S0

frown

S1

frown

S2

smile

0

1

1

0

0

1

Transition Function

State input Next State
S0 0 S1

S0 1 S0

S1 0 S1

S1 1 S2

S2 0 S1

S2 1 S0

Output Function

State output
S0 frown
S1 frown
S2 smile

2



3 Anatomy of VHDL

3.1 Structure

The primary components of a VHDL description are called Library/Design
units. They consist of Package, Entity, Architecture and Configuration decla-
rations. Every design requires at least one Entity and Architecture declaration.
Package and Configuration declarations are optional. A design may have any
number of declarations.
The following is the structure of a Design unit.

Package

Entity

Architecture

Statements

Configuration

3.2 Package

This optional design unit is used for making shared definitions. To use anything
defined in a Package declaration, the library and use statements are needed.
Something that may be in a Package declaration could be a type definition.

package example_package is

type nibble is range 0 downto 3;

end example_package;

3.3 Entity

Entities define the I/O of a design. The entity behaves like a block symbol in a
schematic. An entity has what are known as Ports, these are analogous to the

3



pins on a schematic symbol. All I/O for an entity flows through the ports.
Each Port must have one of 4 direction modes; in, out, inout or buffer. Mode
buffer is equivalent to mode out except that a buffer port may be read within
the Entity.
An Entity may also contain Generics. Unlike Ports, Generics are used to pass
static information. They are often used to configure the behaviour of different
instances of an Entity.

library example_lib;

use example_lib.example_package.all;

entity example_entity is

generic(logic_size: nibble);

port(

a: in nibble;

b: out nibble;

c: inout nibble;

d: buffer nibble

);

end example_entity;

3.4 Architecture

The architecture is the actual description of the design. The architecture de-
scribes what is inside the functional block. An architecture can contain both
concurrent and sequential statements. VHDL allows you to have more than one
architecture for the same entity.
An architecture consists of two pieces: the architecture declaration section and
the architecture body. The declaration section is where you declare objects
that are local to your architecture, and the body section is where you specify
the behavior of the architecture.

architecture behavioral of example_entity is

-- Declaration

begin

-- Body

end architecture;

3.5 Statements

3.5.1 Concurrent Statements

Concurrent statements are placed in the body of the architecture. Such state-
ments include: signal connections, combinational logic, and process statements.

3.5.2 Sequential Statements

Despite the process statement itself being a concurrent statement, the body of
a process contains sequential statements. Sequential statements also appear in

4



procedure and function bodies.

3.6 Configuration

Configuration declarations may be used to associate particular design entities
to component instances (unique references to lower-level components) in a hi-
erarchical design, or associate a particular architecture entity. As their name
implies, configuration declarations are used to provide configuration manage-
ment and project organization for a large design.

4 Describing the Snail

First we will look at the overall structure of the synchronous logic.

-- Useful type definitions using enums to reprasent the states

-- and the outputs.

package States is

type MachineState is (S0, S1, S2); -- Same states as in

diagrams above.

type Emotion is (Frown , Smile); -- Output types.

end package;

use work.States.all; -- use States types in this file.

library ieee;

use ieee.std_logic_1164.all; -- use std_logic type in this file.

entity StateMachine is

port(

Clk: in std_logic;

Rst: in std_logic; -- Positive reset

input: in bit;

output: out Emotion

);

end StateMachine;

architecture rtl of StateMachine is

signal currentState: MachineState;

-- transitionFunction procedure definition will go here.

begin

-- (Clk) sensitivity list makes the process only run on clock

rising and falling edges.

process(Clk) begin

-- For synchronous logic we will only perform

-- state transitions on the clock rising edge.

if(rising_edge(Clk)) then

if Rst = ’1’ then -- Positive reset

currentState <= S0; -- S0 is the start state.

else

-- TODO (Implement transitionFunction procedure)

transitionFunction(currentState , input);

end if;

end if;

end process;

5



-- (currentState) sensitivity list because since this is a

-- Moore machine we must only change the output on

-- state transitions.

process(currentState) begin

if currentState = S2 then

output <= Smile;

else

output <= Frown;

end if;

end process;

end rtl;

The transition function in this case will actually be implemented as a procedure.
The currentState signal is inout because we both read and write to it.

procedure transitionFunction(

signal currentState: inout MachineState;

signal input: in bit

) is

begin

case currentState is

when S0 =>

case input is

when ’0’ => currentState <= S1;

when ’1’ => currentState <= S0;

end case;

when S1 =>

case input is

when ’0’ => currentState <= S1;

when ’1’ => currentState <= S2;

end case;

when S2 =>

case input is

when ’0’ => currentState <= S1;

when ’1’ => currentState <= S0;

end case;

end case;

end procedure;

5 Simulating the Snail

5.1 Test Bench Code

This code allows us to simulate inputs to our state machine so that we can
evaluate it waveforms.

entity TB is

end TB;

use work.States.all;

6



library ieee;

use ieee.std_logic_1164.all;

architecture Behavioral of TB is

signal Clk: std_logic := ’0’;

signal Rst: std_logic;

signal input: bit;

signal output: Emotion;

begin

-- Create an instance of the state machine and map ports.

i_StateMachine: entity work.StateMachine(rtl)

port map(

Clk => Clk ,

Rst => Rst ,

input => input ,

output => output

);

Clk <= not Clk after 5ns; -- Simulate clock with 10ns period.

process begin

Rst <= ’1’; -- Reset to initial state (S0)

wait for 14ns; -- Unset reset 1ns before clock edge to

start machine.

Rst <= ’0’;

input <= ’1’;

wait for 10 ns;

input <= ’0’;

wait for 10ns;

input <= ’1’; -- rising edge

wait for 10 ns;

input <= ’0’;

wait for 10ns;

input <= ’1’; -- rising edge

wait;

end process;

end Behavioral;

5.2 Waveforms

Here we can see the logic at work. Evaluating the wave form with the test bench
code we can see that this machine is actually a positive edge detector.

7



6 Understanding the Schematic

High level we see the test bench clock implementation with an or gate feedback,
then we see the state machine block.

In the more detailed overview we can see the collection of Mux’s that implement
the case statement in the transition function (left of the registers). We can
also see the Mux implementing the output logic (right of the registers). The
registers in the center hold the current state of the machine.

8



7 Bringing it all together

Here we finish by running this all on real hardware. For this part we will be
using an Artix 7 FPGA (basys 3).
https://digilent.com/reference/programmable-logic/basys-3/start

The Part used for this board is the one shown for Project Device in the following.
xc7a35tcpg236-3

9



7.1 Bringing the snail to life

Here we are doing three things; defining the interface, re-mapping hardware
incompatible types, and most importantly implementing a clock divider.

library ieee;

use ieee.numeric_std.all;

package num is

-- The purpose of this subtype is to count 100e6 clockcycles.

This is useful because the overflow logic for the clock divider

is built into the type.

subtype short is integer range 0 to 100e6; -- Defines ~0.5Hz

clock divider overflow.

end package;

use work.num.all;

library ieee;

use ieee.std_logic_1164.all;

entity Snail is

port(

Clk: in std_logic;

Rst: in std_logic;

input: in std_logic; -- State Machine input led

output: out std_logic; -- State Machine output led

led: out std_logic; -- Testing led

led2: out std_logic; -- Clock output led

10



btn: in std_logic -- Testing button

);

end Snail;

use work.States.all;

architecture Behavioral of Snail is

signal em: Emotion;

signal inp: bit;

signal divider: short;

signal dividedClock: std_logic;

begin

i_StateMachine: entity work.StateMachine(rtl)

port map(

Clk => dividedClock ,

Rst => Rst ,

input => inp ,

output => em

);

led <= dividedClock; -- 0.5Hz led blink.

led2 <= btn -- Button to led signal assignment for testing.

-- Manual cast from std_logic to bit.

process(input) begin

if input = ’1’ then

inp <= ’1’;

else

inp <= ’0’;

end if;

end process;

-- Manual cast from Emotion to std_logic.

process(em) begin

if em = Smile then

output <= ’1’;

else

output <= ’0’;

end if;

end process;

-- Clock divider with 100e6 overflow divider.

process(Clk) begin

if rising_edge(Clk) then

divider <= divider + 1; -- Adding 1 until 100e6

if divider = 0 then -- Overflows every 1 second.

dividedClock <= not dividedClock;

end if;

end if;

end process;

end Behavioral;

11



7.2 Hardware Configuration

The hardware configuration is stored in a .xcd file. Path: .src/constrs 1/new/xdc.xdc
This is used to set up the clock at 100MHz and the package IO of the board.
The general XDC for the Basys3 rev B board can be found here:
https://github.com/Digilent/digilent-xdc/blob/master/Basys-3-Master.

xdc

set_property PACKAGE_PIN U18 [get_ports input]

set_property PACKAGE_PIN U16 [get_ports output]

set_property PACKAGE_PIN U17 [get_ports Rst]

set_property PACKAGE_PIN W5 [get_ports Clk]

set_property IOSTANDARD LVCMOS33 [get_ports Clk]

create_clock -period 10.000 -name sys_clk_pin -waveform {0.000

5.000} -add [get_ports Clk]

set_property IOSTANDARD LVCMOS33 [get_ports input]

set_property IOSTANDARD LVCMOS33 [get_ports output]

set_property IOSTANDARD LVCMOS33 [get_ports Rst]

set_property PACKAGE_PIN L1 [get_ports led]

set_property IOSTANDARD LVCMOS33 [get_ports led]

set_property PACKAGE_PIN W19 [get_ports btn]

set_property IOSTANDARD LVCMOS33 [get_ports btn]

set_property PACKAGE_PIN U3 [get_ports led2]

set_property IOSTANDARD LVCMOS33 [get_ports led2]

7.3 Stages

7.3.1 RTL Analysis

12



7.3.2 Synthesis

7.3.3 Implementation

7.4 Package and Device

Package

13



Device

8 Conclusion

In summary we have described and implemented the Snail state machine in an
FPGA. Important things we have learned include; the basics of VHDL, Writing
a State Machine, creating a test bench to program simulations, creating a clock
divider for real hardware, and adding a hardware configuration to a project. The
last step would be to upload this and run it on the Basys 3. Tutorial: https://
digilent.com/reference/learn/programmable-logic/tutorials/basys-3-programming-guide/

start

9 References

[1] https://edg.uchicago.edu/~tang/VHDLref.pdf
[2] https://staff.fysik.su.se/~silver/digsyst/vhdl_ref.pdf
[3] https://digilent.com/reference/programmable-logic/basys-3/start

14


